Wang, M. (1999). Year-to-year variability of the phytoplankton bloom in the southern Adriatic SeaWiFS potential for remote sensing of marine Trichodesmium at sub-bloom concentration. SeaWiFS validation program in the St. Lawrence estuary and gulf. McClain, C. R., Esaias, W. E., Barnes, W., Guenther, B., Endres, D., Hooker, S., Mitchell, G. and Barnes, R. (1992). Plusieurs formules estiment la concentration de chlorophylle en comparant le ratio des lumières bleue et verte, puis en reliant ces ratios à des concentrations connues en chlorophylle aux mêmes moments et emplacements que les observations par satellite. Structure of
Eplee Jr., R.E., Barnes, R.A., and McClain, C.R. Larouche, P. (2000). Empirical algorithm using SeaWiFS hyperspectral bands: a simple test. (1999). Conversion to radiance. Shevchenko, V.P. Sturm, B., Zibordi, G. (2002). Oguz, T., Deshpande, A.G. and Malanotte-Rizzoli, P. (2002). (1999). Tower-Perturbation Measurements in Above-Water Radiometry, In: Since then sensors for worldwide observations of natural waters, notably the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrometer (MERIS), have been in space with a relatively short interruption (June 1986 to September 1997). Hooker, S.B., Zibordi, G., Berthon, J.-F., D'Alimonte, D., van der Linde, D., and Brown, J.W. O'Reilly, J.E., Maritorena, S., Siegel, D., O'Brien, M.C., Toole, D., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P., Cota, G., Hooker, S. B., McClain, C.R., Carder, K.L., Muller-Karger, F., Harding, L., Magnuson, A., Phinney, D., Moore, G.F., Aiken, J., Arrigo, K.R., Letelier, R., and Culver, M. (2000). Hu, C., Carder, K. L., and Muller-Karger, F. E. (2000), Atmospheric correction of SeaWiFS imagery: assessment of the use of alternative bands.
Proceedings of the 6th International Conference on Remote Sensing for Marine and Coastal Environments, Charleston, South Carolina, 1-3 May 2000, pp I351-I358. Li, H. W., Ho, C. R., Kuo, N. J., Chen, C. T. and Tsai, W. T. (1999). The SeaWiFS automatic data processing system (SeaAPS). ocean color scanner. Reflectance-based calibration of SeaWiFS: I. Calibration coefficients. Barnes, R.A., and Zalewski, F. (2003). Reflectance-based calibration of SeaWiFS: II. Cependant, seulement environ 5 à 10 Une description de la lumière, ou radiance, observée par les capteurs du satellite peut être plus formellement exprimée par l'équation de Si le projet SeaWiFS a été conçu principalement pour surveiller les concentrations de chlorophylle-a de l'océan de l'espace, il a également recueilli un grand nombre d'autres paramètres qui sont librement accessibles au public pour la recherche et l'enseignement. (The mirror and telescope are phase-synchronized such that polarization of the image is … SeaWiFS had 8 spectral bands from 412 to 865 nm. In: J. Geophys. (2001). Habbane, M., Dubois, J.-M., El-Sabh, M. I. and Larouche, P. (1998). SeaWiFS Postlaunch Technical Report Series Cumulative Index: Volumes 1-17, A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations. Correction of artifacts in the SeaWiFS atmospheric correction: removing discontinuity in the derived products. An estimate of the distribution of suspended It has a swath width of ~2875 km at the equator and a ground resolution of ~1 km / pixel at nadir. Pinkerton, M.H., Lavender, S.J., Aiken, J. Mantel, J. D., Lucas, M. I. and Shillington, F. A. Gohin, F., Druon, J.N., and Lampert, L. (2002). First, a rotating telescope on the satellite focuses the image on a rotating half-angle mirror. The reflectance-based calibration of SeaWiFS. R. (2003). La NASA offre un logiciel gratuit conçu spécifiquement pour fonctionner avec les données SeaWiFS par le biais du site web de couleur de l'océan. Wang, M. (1999). Hu, C., Carder, K.L., Muller-Karger, F.E., (2001) How precise are SeaWiFS ocean color estimates? C. (2002). SeaWiFS ocean color data archive and distribution system: Primary productivity in the northern Canary Islands region as inferred from SeaWiFS imagery. Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current. Fuentes, M., Doney, S. C., Glover, D. M., and McCue, S. J. Burenkov, V.I., Vedernikov, V.I., Ershova, S.V., Kopelevich, O.V., Study on variation of ocean-color and thermal features at the Kuroshio-Oyashio frontal region using SeaWiFS and AVHRR data. (2000). Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. assessment of system performance. Comparison of SeaWiFS bio-optical chlorophyll- The mission and sensor were optimized for ocean color measurements, with a local noon (descending) equator crossing time orbit, fore-and-aft tilt capability, full dynamic range, and low polarization sensitivity. (2002). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean. Phytoplankton pigment distribution from SeaWiFS data in the subtropical convergence zone south of Africa: a wavelet analysis. and Kahru, M. (1998). Lavender, S., and Groom, S. (1999). Généralement parlant, plus l'eau est verte, plus il y a de phytoplancton dans l'eau et plus les concentrations en chlorophylle sont élevées. data.